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Problem

l Background: 1 | Tin Whisker Growth Kinetics

Whiskers are conductive filaments that can span between
conductors and cause shorting failures. They grow sponta-
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® Straight whiskers: Growth rate ~3 microns per day (Room Temp), slightly decreasing
Pro j ect G od IS Photos: http://nepp.nasa.qgov/whisker/ with time. This is very fast growth when compared with typical Sn diffusivity values.

B Kinked whiskers: Growth rate decreases or growth completely stops when kinks occur. Is

® Obtain whisker growth kinetics as a function of temperature; Determine an activation en- . . 5 o ;
this related to a change in the crystallographic orientation?

ergy for whisker growth.

® Characterize the whisker growth phenomenon from the “bottom up.” Use unique

characterization tools: electron backscatter diffraction (EBSD), Focused-lon Beam Tin WhiSke ¥ Cr yS ta” Ogl‘ aphy = & WhiSke r gl’ 0, Wth aXiS
(FIB), TEM, confocal microscopy, etc. measurement

® Computational materials modeling: predict whisker nucleation density and whisker
growth rate.

Whiskers mounted on TEM support — obtained by
wiping grid over sample surface.

Electron Backscatter Diffraction in the SEM was used
to determine the growth direction of 37 whiskers.

Approach
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comPUtatlonaI mOdEIlng EBSD showed all whiskers are single crystals. E
Whiskers grow with low index directions parallel to
the growth axis.
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B Currently working with existing growth rate
® Existing atomic force fields for Sn are not suffi- model:
ciently accurate to model relevant behavior
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. Change of ® Direct observation of Sn whisker growth has not been done previously in this detail: ~40 individual
growth orientation whiskers observed over period of weeks.
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B Growth kinetics information gained from these studies will provide valuable input for modeling effort.
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Type |l B Measurement of in-film stress and the effects of temperature on whisker growth will continue next FY.
. Kink/bend Also, laser confocal microscopy, FIB sectioning, and TEM analysis next FY will build on previous detailed
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y characterization of Sn whiskers.
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